Neuroeducation: 25 Findings Over 25 Years

November 26th, 2013 6 Comments Features


It’s been 25 years since the field of neuroeducation first reared its head in academia. Spearheaded in 1988 by the Psychophysiology and Education Special Interest Group, educational neuroscience is now the focus of many research organizations around the world, including the Centre for Educational Neuroscience; the International Mind, Brain, and Education Society; and the Neuroeducational Research Network.

To celebrate the progress of this monumental discipline, we have compiled a list of the 25 most significant findings in neuroscience education over the past 25 years.

Editor’s note: check out our Learning Strategies graphic (a 3D interactive brain) to explore how the brain works and why all educators need to know.

Here’s to another productive quarter-century ahead.

  1. Brain plasticity. Perhaps the most encouraging finding in all of neuroscience is that the brain changes constantly as a result of learning, and remains ‘plastic’ throughout life. Studies have shown that learning a skill changes the brain and that these changes revert when practice of the skill ceases. Hence, ‘use it or lose it’ is an important principle for lifelong learning. Maybe more importantly, these developments suggest that students can improve skills in countless areas, regardless of initial ability. Furthermore, research has found an inverse relationship between educational attainment and risk of dementia, which means that keeping the mind active slows cognitive decline and improves cognitive abilities in older adults.

  2. The discovery of mirror neurons. Italian researchers may have solved that puzzle in the 1980s and 1990s, when they identified mirror neurons. The researchers claimed that watching and performing an action causes the same neurons to fire, so simply seeing a person go through an embarrassing, triumphant or nerve-wracking situation could cause us to feel as if we had gone through it ourselves. Mirror neurons could be involved in empathy and acquisition of language, while a deficiency of mirror neurons could help to explain autism. “Mirror neurons seem to be a bridge between our thinking, feeling, and actions—and between people,” says Marco Iacobini, lead researcher. “This may be the neurological basis of human connectedness, which we urgently need in the world today.”

  3. Both nature and nurture affect the learning brain. Genetic make-up alone does not shape a person’s learning ability; genetic predisposition interacts with environmental influences at every level. For example, genes can be turned on and off by environmental factors such as diet, exposure to toxins, and social interactions. Neuroscience has the potential to help us understand the genetic predispositions as manifest in the brain of each individual, and how these predispositions (nature) can be built on through education and upbringing (nurture).

  4. Gardner’s Theory of Multiple Intelligences. First published in 1983, Gardner’s Frames of Mind presented a vision of seven intelligences (linguistic, logical-mathematical, spatial, bodily-kinesthetic, musical, interpersonal, intrapersonal) that humans exhibit in unique and individual variations. An antidote to the narrow definition of intelligence as reflected in standardized test results, Gardner’s theories have been embraced and transformed into curricular interpretations across the country.

  5. The brain’s response to reward is influenced by expectations and uncertainty. Khan Academy, an online learning portal, takes advantage of the science of reward by challenging students to complete games and problem sets in order to win badges. Many students report feeling an affinity for subjects like math and science that they didn’t have before the game-based learning program was implemented in their schools. A study by teacher and neurologist Judy Willis in 2011 found that students who worked on writing in positive, supportive groups experienced a surge in dopamine (which we’ve already discussed the positive effects of), as well as a redirection and facilitation of information through the amygdala into the higher cognitive brain, allowing students to better remember information over the long term.

  6. The brain has mechanisms for self-regulation. Understanding mechanisms underlying self-control might one day help to improve prospects for boosting this important life skill. In addition, it is important to learners and teachers who are dealing with lack of discipline or antisocial behavior. Given that the self-reported ability to exert self-control has been found to be an important predictor of academic success, understanding the neural basis of self-control and its shaping through appropriate methods can be extremely valuable. [Read more about how to promote delayed gratification and grit.]

  7. Education is a powerful form of cognitive enhancement. Cognitive enhancement usually refers to increased mental prowess—for instance, increased problem-solving ability or memory. Such enhancement is usually linked with the use of drugs or sophisticated technology. However, when compared with these means, education seems the most broadly and consistently successful cognitive enhancer of all. The steady rise in IQ scores over the last decades is thought to be at least partially due to education.

  8. Neuroscience informs adaptive learning technology. Some insights from neuroscience are relevant for the development and use of adaptive digital technologies. These technologies have the potential to create more learning opportunities inside and outside the classroom, and throughout life. This is exciting given the knock-on effects this could have on wellbeing, health, employment, and the economy.

  9. Dyslexia and other learning disorders. Neuroscience research has evidenced its ability to reveal ‘neural markers’ of learning disorders, most notably in the case of dyslexia. EEG studies have revealed that human infants at risk of dyslexia (i.e. with immediate family members who suffer from dyslexia) show atypical neural responses to changes in speech sounds, even before they are able to understand the semantic content of language. Not only does such research allow for the early identification of potential learning disorders, but it further supports the phonological hypothesis of dyslexia in a manner unavailable to behavioral research.

  10. Language and literacy. Over the last decade, there has been a significant increase in neuroscience research examining young children’s processing of language at the phonetic, word, and sentence levels. There are clear indications that neural substrates for all levels of language can be identified at early points in development. At the same time, intervention studies have demonstrated the ways in which the brain retains its plasticity for language processing. Intense remediation with an auditory language processing program has been accompanied by functional changes in left temporo-parietal cortex and inferior frontal gyrus.

  11. Mathematics. In addition to identifying the brain system responsible for basic knowledge about numbers and their relations, cognitive neuroscience research has revealed that numerical information can be stored verbally in the language system. While many arithmetic problems are so overlearned that they are stored as verbal facts, other more complex problems require some form of visual-spatial mental imagery. Showing that these subsets of arithmetic skills are supported by different brain mechanisms offers the opportunity for a deeper understanding of the learning processes required to acquire arithmetic proficiency.

  12. Social and emotional intelligence. In the last 10 years, there has been an explosion of interest in the role of emotional abilities and characteristics in contributing to success in all aspects of life. In particular, the concept of Emotional Intelligence (EI) has gained wide recognition. Prefrontal brain damage in children affects social behavior causing insensitivity to social acceptance, approval, or rejection. These brain areas process social emotions such as embarrassment, compassion, and envy. Moreover, such damage impairs cognitive as well as social decision making in real world contexts.

  13. Attention. Attention is a vital mechanism through which a student can actively select particular aspects of her environment for further learning. Executive functions include the abilities to inhibit unwanted information or responses, to plan ahead for a sequence of mental steps or actions, and to retain task-relevant and changing information for brief periods (working memory). Like attention, executive function abilities provide a critical platform for the acquisition of domain-specific knowledge and skills in an educational context. Further, recent studies show that preschool training of executive skills may prevent early school failure.

  14. Memory. Research on memory has proven extremely useful—but infrequently used— in educational contexts. We now know that we have at least two different ways of organizing memory, and that working memory and long term memory require different biological mechanisms. The famous patient H.M. demonstrated that declarative memory (memory for facts) functions separately from procedural memory (memory for automatic processes). Significant research has been conducted on the relationship between learning and memory, and has shown that the brain requires specific forms of aid (associations, spaced repetition, multiple modes, etc.) in boosting recall.

  15. The science of sleep. Most of the memory consolidation our brains undergo happens at night. Retention of newly learned material can be enhanced simply by taking a nap after a lesson. In addition, neuroscience research has demonstrated that sleep patterns change, often significantly, as individuals age. Multiple studies have found that adolescents need more sleep than other age groups and are unlikely to function at peak cognitive capacity early in the morning. [Lack of sleep is a form of stress – read more on how to manage it.]

  16. The brain thrives on variety. Research has found that variety is key in learning because, simply put, the brain craves it, boosting levels of both attention and retention in students. As a result, teachers are presenting information in unique ways or asking students to solve a problem using multiple methods, not just memorizing a single way to do so.

  17. Cognitive apprenticeship. Backed by significant research, this instructional technique involves modeling, coaching, scaffolding, articulating, reflecting, and exploring—all embraced by the brain.

  18. Learning involves both focused attention and peripheral attention. Have you ever found yourself recalling a fact you don’t remember consciously learning? Despite the cognitive filters our brains use to focus attention on a single stimulus, a significant amount of information is processed peripherally. This has great consequences for learning, meaning that we often pick up more than we think we “know” from our surroundings.

  19. Complex learning is enhanced by challenge and inhibited by threat. The hippocampus has proportionally more receptors for stress hormones than any other portion of the brain. It is also critical in forming new memories and is linked to the indexing function of the brain. It allows us to make connections, to link new knowledge with what is already in the brain. It is like a camera lens, and, under threat related to helplessness, it closes off. We then move back into well-entrenched behaviors. But it opens up when we are challenged and are in a state of “relaxed alertness.” When the learner is empowered and challenged, you begin to get the maximum possibility for connections. That is why the brain needs stability as well as challenge.

  20. Emotions are critical to patterning. In the brain you can’t separate out emotion from cognition. It is an interacting web of factors. Everything has some emotion to it. In fact, many brain researchers now believe there is no memory without emotion. The “light bulb effect” describes a scenario in which we have heightened—and often distorted—memory for emotional events. Emotional learning is possibly the most concrete type of learning there is.

  21. Learning engages the entire physiology. A student’s physical health—the amount of sleep, the nutrition, etc—affects the brain. So do moods. We are physiologically programmed, and we have cycles that have to be honored. Someone who does not get enough sleep one night will not absorb much new information the next day. Fatigue and malnutrition will affect the brain’s memory.

  22. Memorization and learning are not the same thing. Learning means that information is related and connected to the learner. If it’s not, you have memorization, but you don’t have learning. There are still things we have to memorize, things that need to be repeated. Multiplication tables are very useful, but we want to make sure that students understand the concept of multiplication. Standardized tests rely on memorization, but they do not necessarily reflect (or measure) learning.

  23. Metacognition enhances learning. Metacognition—sitting back and saying, “What did I learn and how did I learn that? What other connections are there? How else can I do this?” –is very important to consolidating learning, expanding on it, and making additional connections. This kind of awareness is key to developing critical thinking skills.

  24. The brain is a parallel processor. Thoughts, intuitions, pre-dispositions, and emotions operate simultaneously and interact with other modes of information. Good teaching takes this into consideration. Hence, the teacher as an “orchestrator of learning.”

  25. “Cells that fire together wire together.” Based on the Hebbian theory of cell assembly, this well-known phrase captures the concept of “associative learning,” which occurs when simultaneous activation of cells leads to pronounced increases in synaptic strength between those cells, thereby enhancing learning.


Saga Briggs is Managing Editor of InformED. You can follow her on Twitter@sagamilena or Facebook.

6 Responses

  1. A Morris says:

    To put it mildly I had absolutely no idea about any of this lot. It makes one feel a bit stupid, to be honest!

    A great read, though. I particularly liked, “cognitive neuroscience research has revealed that numerical information can be stored verbally in the language system.” I was always very average/dire at maths. I still am. This is a bit of a boost as I’ve always been very good at English. Huzzah!

    • Saga Briggs says:

      Thanks for the comment, Alex! Glad you found it educational. And yes, there are many secrets regarding cross-disciplinary memorization strategies to be gleaned from neuroscience. English is the most handy, in my opinion 😉

  2. Greg Liberto says:


    This is an amazing, comprehensive overview. I have a coaching program that shows golfers how to reverse their negative energy and play their Best Golf EVER. This information has allowed me to realize the importance of incorporating more variety into my program, and has also shed some light on why I am having more success recently.

    I now start my program with having them identify what they want from the game as well as the harsh reality of where their game is today. From there, they create an image for each and the resulting discrepancy between them is amazing. I noticed that this is allowing them to have a stronger emotional connection to what they want to achieve, but it is also getting them more engaged with each ensuing coaching session.

    Thank you for sharing this and I want to let you know that it matters !!!

    Greg Liberto, The HEAD Coach

  3. This is fabulous – thank you so much! Ten years ago a teacher who talked about neuroscience for improving classrooms was considered odd and off the wall – I know, because I was that teacher.
    Ten years from now any teacher who CAN’T and DOESN’T talk about neuroscience will be considered a failing teacher. Let’s have lots more like this!

  4. Judi Munday says:

    I am delighted to see that the importance of neuroscience research has been given the attention it deserves. As Paul N. wrote, for many years, I too was one of those teachers who talked about neuroscience and was considered “odd” and “off the wall.” It’s delightful to finally find myself in the mainstream!

    Over my 30 years of teaching, tutoring and testing children I seen an increasingly varied range of LD issues that limited my students’ achievement. The ongoing discoveries from neuroscience have shed so much light on the root causes of those LD challenges. The research has helped me understand the underlying causes and effects of many learning disabilities, and this has inevitably led to being better able to help them appropriately.

    My clients for the past 16 years have all come from the home school community – many are those who left a one-size fits all inclusive model of special education that failed to provide the student with appropriate educational support. Parents took the giant step to rescue their children by teaching them at home — and amazingly, the kids prospered when I am able to give them the tools and information they need to support and teach the child with special needs! The evolving revelations of neuroscience have been one powerful tool that has helped so many of them better understand and help their child.

  5. Alex Graves says:

    I love to study the brain.

    Thank you for the information.

Leave a Reply to Greg Liberto